Industrial wastewater treatment

Wastewater from an industrial process can be converted at a treatment plant to solids and treated water for reuse.

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater (or effluent) may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans.[1]: 1412  This applies to industries that generate wastewater with high concentrations of organic matter (e.g. oil and grease), toxic pollutants (e.g. heavy metals, volatile organic compounds) or nutrients such as ammonia.[2]: 180  Some industries install a pre-treatment system to remove some pollutants (e.g., toxic compounds), and then discharge the partially treated wastewater to the municipal sewer system.[3]: 60 

Most industries produce some wastewater. Recent trends have been to minimize such production or to recycle treated wastewater within the production process. Some industries have been successful at redesigning their manufacturing processes to reduce or eliminate pollutants.[4] Sources of industrial wastewater include battery manufacturing, chemical manufacturing, electric power plants, food industry, iron and steel industry, metal working, mines and quarries, nuclear industry, oil and gas extraction, petroleum refining and petrochemicals, pharmaceutical manufacturing, pulp and paper industry, smelters, textile mills, industrial oil contamination, water treatment and wood preserving. Treatment processes include brine treatment, solids removal (e.g. chemical precipitation, filtration), oils and grease removal, removal of biodegradable organics, removal of other organics, removal of acids and alkalis, and removal of toxic materials.

  1. ^ Cite error: The named reference Metcalf was invoked but never defined (see the help page).
  2. ^ George Tchobanoglous; Franklin L. Burton; H. David Stensel (2003). "Chapter 3: Analysis and Selection of Wastewater Flowrates and Constituent Loadings". Metcalf & Eddy Wastewater engineering: treatment and reuse (4th ed.). Boston: McGraw-Hill. ISBN 0-07-041878-0. OCLC 48053912.
  3. ^ Von Sperling, M. (2007). "Wastewater Characteristics, Treatment and Disposal". Water Intelligence Online. 6. doi:10.2166/9781780402086. ISSN 1476-1777. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  4. ^ "Pollution Prevention Case Studies". Washington, D.C.: U.S. Environmental Protection Agency (EPA). 11 August 2021.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search